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I. EXECUTIVE SUMMARY

Ultrasmall Electronics Research, now popularly called Nanoelectronics, I

is a research effort aimed at providing semiconductor devices and device-

level architectures that are downscalable to fundamental physical limits.

This report summarizes our progress in developing an architectural basis for

nanoelectronics under ONR Contract N00014-85-C-0760. In this section, we

summarize our research motivations, objectives, approaches, and results.

Section II provides an overview of the technological limits driving this

research. Section III discusses our overall approach to ne.t-generation

nanotechnology. Subsequent sections present our experimental results in I

detail. Appendices A through F contain the large quantity of reduced data

collected over the course of this research.

1. Motivations for the Research

The downscaling of the minimum lateral geometries of transistor-based

integrated circuits will eventually be brought to an end by a combination of

problems related to devices, interconnection noise, and reliability. The

performance limits of conventional integrated circuits are expected to be

reached within 20 years. The use of geometric scaledown to further increase

the density of on-chip functionality is inhibited by both the inability to

scale interconnect isolation and degradation of device properties as local

interdevice coupling becomes a dominant effect. Avoiding these limits

requires revolutionary approaches to both devices and architectures that

exploit the unique properties of nanometer-sized electronic structures. The

casualties of this revolution will include high connectivity architectures,

transistors, and traditional circuit concepts.

The solution to the scaledown barrier requires:

1. Totally new device concepts which circumvent the scaling limits of

conventional transistors; and _

2. New, fault-tolerant architectures that support computation without

requiring random, long-range connections between active elements.

We have determined that the cellular automaton (CA) best satisfies the

requirements for a sucessful post-microelectronics chip architecture. As

Ik



shown in Figure 1, a cellular automaton is a collection of simple, active

devices which interact locally in discrete space and time. Each active

device, or cell, is placed at one of the vertices of a regular lattice, as

shown. The logic operations carried out by each cell are determined by a rule

of interaction which could be as simple as a lookup table. This architecture

has the important advantages of both structural regularity and not requiring

long-range connections to perform complex mathematical operations.

AUTOMATON CELL

LOCAL-ONLY
INTERCELL

CONNECTIVITY

Figure 1. Two-dimensional lattice of a typical cellular automaton.
Individual cells perform simple logic based on input from their
immediate neighbor cells.
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2. Objective of Architecture Research

The objective of this research is to provide computer architectures that

avoid the performance barriers inherent in present computer technology. In

particular, this work investigated device architectures that may permit the

continued downscaling of integrated circuits through the mid-1990s and

beyond. Ultimately, this goal will be achieved through the development of

sophisticated and scalable computing functions that support next-generation,

quantum coupled device technology. The near-term objectives of this effort

were to quantify the dynamic behavior of general cellular automata and

determine the unique physical properties of nanometer-sized devices that were

useful for computation.

3. Research Approach

Computer simulations of multidimensional cellular automata were used to

gain understanding of the dynamics and computational properties of arrays of

locally coupled active devices. Large arrays of devices were characterized to

quantify the sensitivity of locally coupled device architecture; to noise.

Finite automata theory was used to develop a multivalued algebra compatible

with quantum coupled device technology.

Our strategy for developing quantum device architectures is shown in

Figure 2. The physical properties of nanometer-sized electronic devices are

expected to be quite different from those of conventional transistor-like

switching devices. At present, there is no technology base with which to

develop switch equivalents, logic gates, and complex functions. For this

reason, we approached the investigation of quantum architectures from the

bottom up. That is, we studied abstract cellular automata to determine

empirically the behavior of large classes of locally coupled device arrays,

and developed mathematical logic operations based on the most basic

interactions expected from physical structures dominated by quantum

mechanical effects.

3
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4. Summary of Contract Results

4.1 Development of Simulation Environment
p

To accelerate the survey of the generic properties of locally coupled

systems, three special-purpose, high-speed simulators were constructed.

These workstation adjuncts were used to conduct detailed characterizations of

the space-time dynamics of general cellular automata models. Each machine was

based on either pipelined or parallel architectures. Processing throughputs

as high as 1.2 billion cell operations per second were demonstrated with

these machines. This throughput represented a 1O,OOOX improvement over our

software simulations using personal computers. We estimate that the data

collected using these accelerators would have required over 3000 years of

continuous simulation using a personal computer.

In addition to the hardware, a flexible software package was developed

that allowed slower, but much more interactive, development of CA models.

The combination of a user-friendly software environment with high bandwidth

accelerators provided an excellent simulation environment with which to

explore new concepts in computing CA, and then conduct exhaustive

characterization of interesting models.

4.2 Characterization of One-Dimensional Automata

An understanding of the noise sensitivity of cellular automata may lead

to methods for constructing fault tolerant computer functions. CA are

characterized by dynamic attractors or Limit Cycles. These space-time

patterns are the stable modes of a given distribution of rules and cell

states. Knowledge of these eigenmodes fully describes the noise-free

operation of general CA. In addition, the response of a model to added noise

also quantifies the sensitivity of a particular model to event upset.

To obtain the statistical properties of one-dimensiona" CA, we used

computer simulations to measure the Markov properties of a broad class of CA.

It is possible to consider CA as multistate memories if we take the long-term

evolution (attractors) as the possible items that can be recovered from the
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memory. Therefore, it is useful to determine how noise affects the isolation

between stable cellular automata behaviors. To this end, we measured the ..

noise sensitivity of a large class of CA to added noise. First, nearest-

neighbor connected cellular automata were characterized to determine the I

limiting time evolution of these models. The number and size of state

attractors were determined as a function of rule and lattice size for all 256

interaction rules. To examine the noise sensitivity of these systems, Markov

transition matrices were then tabulated based on Monte Carlo experiments on

all rules and for all array sizes up to 28 cells in length. It was found

that nearest-neighbor automata may be grouped according to the size and

number of their state attractors, and that, in general, the long-term

dynamics of these systems are not fault-tolerant.

4.3 Characterization of Two-Dimensional, Totalistic Automata

By analogy with majority logic approaches to error correction in noisy

circuits, we examined the sensitivity of two-dimensional, totalistic cellular
automata to noise. Under totalistic rules, the interaction between cells is a

function only of the average state of their neighbor cells. As a result, a

fraction of the cells within a totalistic array may be upset by thermal

fluctuations, for example, without adversely impacting the overall dynamics.

We found that, typically, the average state of the array cells could be

controlled (switched) by varying the state of the perimeter cells. The model

displayed transistor-like switch action, demonstrating gain and inherent

resistance to multiple event upset. In addition, we were able to program

hysteresis in the relationship between average cell state density, array

size, and boundary conditions. The behavior of this class of automata is

characterized by significant fault tolerance of both soft (recoverable) and

hard (fixed) errors in the cell states. Due to the totalizing action of the

cell rules, as many as 10% of the array cells could be defective without

affecting qualitatively the switching behavior of the overall network. This

response has important application in embedding fault management in the most

basic logic operations of nanometer-sized circuits.

We also examined the ability of locally coupled arrays to store reliably

randomly selected cell patterns. We demonstrated that several stable cell

patterns could be stored, periph2rally addressed, and retrieved from the same
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totalistic array using simple correlation techniques. Patterns could be

recalled by addressing the perimeter of the array with a subset of the

desired cell pattern. These automata demonstrated a higher level of

functionality by acting as fault-tolerant, associative memories. A method

for enhancing memory recall through simulated thermal annealing was

demonstrated. Experiments were conducted to determine the effective

temperature at which a given model can no longer use totalistic averaging as

a practical method for filtering noise. These data are not included here,

but are currently being prepared for publication.

4.4 Development of Quantum Algebra and Circuit Concepts

Avoiding the limits of current VLSI technology will require the

development of sophisticated device functions that transcend simple

"transistor-like" switch operations. One approach uses multivalued logic

concepts to permit higher radix operations between, for example, locally p
coupled quantum devices. Traditional multivalued algebras were not

immediately realizable by the more obvious quantum interactions of resonant

tunneling and quantum size effects. However, we showed in principle that

algebras exist that are naturally compatible with quantum device properties.

Quantum device structures were discovered that meet the basic mathematical

requirements for a functionally complete logic system.

4.5 Self-Timed Cellular Automata

The physical scaledown of electronic circuits exacerbates many design

problems associated with low-level connectivity and timing. Of particular

concern is the problem of clock skew within and between functions. As

circuit complexity increases, some form of mutual signaling must be used to

synchronize independent functions. These clock signals provide an orderly

method for data exchange between asynchronous functions and also supply the
"arrow of time" needed to direct the flow of data within functions. However,

the low dimensionality of the CA places obvious limits on the degree to which

the activities of large device and function arrays may be synchronized. It

is essential to devise generic methods for distributing skew-free clocks or

to provide self-timing techniques compatible with nanometer-sized circuitry.

In studying asynchronous cellular automata, we devised a simple method

for managing the timing of computation in cellular automata. A simple,

7
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three-phase clock was implemented within each automaton cell. Under the

control of these clocks, interactions between asynchronous cells could be

effectively synchronized. The approach is most easily applied to nearest-

neighbor coupled cellular automata, although any level of connectivity can be

supported at the expense of cell complexity and computational throughput. We

emphasized the use of the method for nearest-neighbor CA, since this class of

automata is known to be functionally complete.

8!
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II. MOTIVATIONS AND OBJECTIVES OF ARCHITECTURE RESEARCH

This section presents a review of some of the problems with current chip

technology and discusses the essential features required of a successful, go

post-microelectronic approach. While instructive, it may be skipped without

loss of continuity.

1. Introduction to Problem

The information economy is a direct offspring of semiconductor

technology. In large part because of the invention and improvement of the

integrated circuit (IC), information management has become decentralized,

convenient, and cost-effective. The further development of IC technology is

fueled by an ever-increasing demand for information processing in science,

medicine, education, industry, and national defense. Semiconductor

integrated circuits are the primary enablers of defense electronic systems.

This pervasiveness has continued due to the exponential improvements in the ,

power, size, and weight factors of integrated systems with time. Certainly,

the motivations to improve the performance of computing systems will

intensify as we move into the age of widespread robotics, desktop

supercomputers, man-machine interfaces, and hardwired artificial

intelligence.1

There are two approaches to providing the computational resources that

will meet the information processing requirements of the 1990s and beyond. 0

First, new algorithms can be developed that give exponential improvements in

the mapping of a problem solution onto present technology. The Fast Fourier A

Transform is an archetypical example of a performance breakthrough achieved

by algorithmic optimization alone. Embodiments of optimized algorithms range

from systolic digital signal processor arrays to silicon neural networks.

Second, processor performance can be enhanced by increasing the level of chip

integration and functional density. Function scaledown, which also provides

increases in speed, as well as reductions in power and weight, has been the

dominant system enabler to date. In fact, the growth of the semiconductor

industry has paralleled the physical downscaling of computer components.

9



Until recently, the potential for advancing both algorithm science and

chip technology was open-ended. There are now clear indications that chip-

level functional density will saturate within 20 years. When this maturation

of technology occurs, the return on the investment in new algorithms will

also decline. The resulting slowdown of chip enhancement will impact the

full spectrum of semiconductor computer technology. The impending

catastrophe cannot be avoided by anything short of a revolution in chip

technology.2

2. The Scaling Limits of Conventional Technology

An important factor responsible for the pervasiveness of the integrated

circuit has been the sustained exponential decrease over time of minimum

lateral circuit geometries. However, there are limits to the use of geometry

scaledown as the means to further improve the performance of conventional

integrated circuits. These limits are so fundamental as to force the

ultimate abandonment of high connectivity architectures, transistors, and the

classical circuit concept. We can review briefly a few of the basic 4

problems.

2.1 Transistor Scaling Limits

The linchpin of solid state electronics is the p-n junction. The

depletion layers between p- and n-regions of a circuit serve as the potential

barriers required to guide the flow of electronic charge. A transistor is

simply a device that can modulate the effectiveness with which p-n structures

electrically isolate two points in a circuit. Any integrated technology must

possess a similar ability to control the direction and magnitude of charge

transport. Unfortunately, depletion layers begin to lose their ability to

confine electrons as p-n widths are scaled below 0.2 pm in size. Based in

part upon the failure of depletion isolation, it has been estimated that

junction-based switching devices cannot be shrunk appreciably below 0.1 pm.3

The classical transistor must eventually lose its ubiquity.

2.2 Connectivity Scaling Limits

The overall functional density (functions/area-time) of a computing

machine is controlled by the available interdevice communication bandwidth

and device density at the board, chip, function, and gate levels. Since the

speed of light sets an upper limit on communication rate, system performance

10



can be improved if more functions are integrated on-chip. However, current

models of circuit parasitics show that with scaling, RC delays and interline

coupling rapidly degrade the speed and noise performance of submicrometer

interconnections.4,5  Moreover, device size and electromigration factors set

upper limits on the available current density at the device port. For this

reason, even well-isolated, long interconnects will have self-capacitances

that lead to unacceptable effective device switching speeds. In the near

future, the computational advantage of long, multilevel interconnects will be

negated by the saturation and/or reduction of the effective communication

bandwidth per wire. Therefore, merely combining submicrometer active devices

with conventional interconnect networks will not significantly improve the

performance of integrated systems.

2.3 Yield Scaling Limits

At present, the unavoidable errors induced by substrate defects, cosmic

rays, and thermal fluctuations are second-order considerations in VLSI

design. A low density of fixed and transient errors can be handled by

production culling and error control coding, respectively. Further component

scaling will make these ad hoc fault management schemes obsolete. Scaledown

reduces the number of electrons that can participate in each computation. ,

This reduction translates into an increase in both the informational

impedance and the noise sensitivity of the switching event. In the future,

media noise and transient upset events will affect entire groups of

submicrometer devices. Hard and soft faults will become inherent

technological characteristics of ultra-scaled structures. The age of the

100% functional, fault-free integrated circuit is fading fast.

2.4 Addressability Scaling Limits

An inherent problem with ultra-integration will be the further decrease

in our ability to access directly a given functional resource. For a minimum

feature size (1/S), resources may grow as fast as S2 and S3 for two- and

three-dimensional circuits, respectively. However, conventional access

methods are essentially peripheral, so that I/O accessibility may always be

one dimension behind component density. With scaledown, it will become

increasingly difficult to address directly either single devices or even

11 A
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entire device groups. This growing inaccessibility presents the potential

for severe I/O bottlenecking at function boundaries.

2.5 Superposition Limits

The issue of intercomponent crosstalk points out a subtle influence

scaling will have on the circuit paradigm. Traditionally, a Principle of

Superposition has been assumed in the design of complex information

processing structures. This principle, quite valid in the 1970s, asserted

that the properties of active elements such as transistors and logic gates

were independent of the physical environment of the device. In addition, the

superposition argument maintained that the behavior of the computing system

at any level of complexity could be expressed as a piecewise-linear sum of

the characteristics of more basic functions. Many of the impediments to the

further enhancement of conventional computing structures can be traced to the

invalidation of superposition at one or more levels of complexity. For

example, it is clear that successfully avoiding the problems associated with

interconnect scaling would allow device density to control the limiting on-

chip functional density. However, as interdevice geometries decrease, the

coupling between these active, nonlinear agents will also increase. Device

densities are now reaching the point where classical notions of isolated,

functionally independent active elements are less appropriate than are

distributed models that include the possibility of collective modes of device

interaction. Conventional device simulation models already recognize the

need to account for interdevice parasitics. 6 Scaling into the nanometer size

regime only exacerbates the problem of isolating device function from the

local environment. Further scaling will make it impossible to partition a

circuit into active and passive components. Lumped-constant rules will be of

little use in nanometer design.

In addition to architectural problems at the device level, certain chip

applications cannot employ the principle of superposition in the design of

functions. Even though traditional sequential computers are computationally

universal, the complexity of NP-complete optimization problems requires

prohibitively large serial processing power to reach good solutions within an

acceptable time. Important tasks such as artificial intelligence, image

understanding, adaptive learning, and general speech recognition demand

121
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massively parallel, global computations. It is possible that true machine

intelligence can evolve only if the behavior of the system as a whole exceeds

the sum of its separate parts. 7  If that is true, even highly concurrent

architectures that can be decomposed into modules of more primitive r.s

functionality may not exhibit the emergent collective properties required to

solve import ;,t compute-bound problems.

2.6 Limits to Static Design

Interpretation and compilation are popular approaches to hardware and

software development. The two methods trade speed for flexibility. In

program compilation, the computer programmer expresses an algorithm in terms

of a language, then converts this logical literature into a fixed, machine-

dependent set of basic operations. Similarly, the computer architect may

employ a library of hardware primitives that can be used with a "silicon"

compiler to map algorithms into an application-specific integrated circuit

(ASIC). In contrast, program interpretation uses a core routine to execute

arbitrary algorithms phrase by phrase, while machine interpretation utilizes

a microprocessor to emulate arbitrary hardware at reduced throughput.

These methods suggest that it is not possible to have, simultaneously,

algorithmic flexibility and optimum throughput. The more optimized the

hardware, the lower its adaptability to new computing environments. For this

reason, ASIC may be destined to accelerate, but never displace, general-

purpose, possibly dinosauric architectures. Our inability to "erase"

transistors and wires as easily as we erase code warns of an ultimate

saturation of the scope-performance product of static architectures.

3. Essentials For a Successful Post-VLSI Era

The aforementioned limits are compelling, but are for the most part .#

technological in origin. There is no fundamental reason why physical

scaledown cannot be used to improve the functional density of integrated ,

circuits indefinitely. However, dramatic shifts from convention are

necessary if the advantages of scaling are to be realized beyond the 1990s.
,

To avoid the limits of current practice, we have proposed the following set

of six essential requirements for a successful postmicroelectronic IC

technology. 7

13



* Devices must be scalable to fundamental physical limits.

* The most basic functions of a computing system must employ only

local connection schemes.

* Device function must transcend simple switch operations.

0 Intercomponent coupling must be exploited as a method of
communication and control.

* Fault management must be incorporated at the lower levels of

functionality and feature size.

* Functionality must be reconfigurable.

3.1 Discussion

Further increases in the density of on-chip computational resources can
be obtained only through the combined development of revolutionary devices
that are based on nanometer physical phenomena and chip architectures that
avoid interconnect saturation. This implies an absolute minimization of

device connectivity within low-level functions. Therefore, it will be
necessary to recast existing random logic networks into low-connectivity

equivalents. To avoid I/O bottlenecks in the reorganized functions, a high
degree of functional concurrency and pipelining will be necessary. We expect
that the advantages that accrue from regular VLSI layout will carry over to
regularized nanometer functions. The combination of layout regularity and
pipelining at several levels of complexity suggests that these architectures

will have a measure of topological scale invariance. In short, the future of

chip architectures may be very fractal.

It will be necessary to construct functions holistically through an

appreciation of the impact of environment upon active and passive structures.
Integrated circuit models in the late 1990s may abandon entirely the idea of
point-in-space design in favor of the construction and solution of the

continuous partial differential equation that describes the effective

computational volume.

14



To compensate for the penalties incurred by reducing interconnect

complexity, device behavior must transcend simple "transistor-like"

functions. By "device" we mean a set of physical structures that

collectively perform a computing function without the use of wiring. Since

reduced connectivity translates into communication delays, these most basic

computing elements must execute higher level operations when the data finally

arrive. Increasing device complexity amounts to extracting greater

functionality from known physical phenomena. For example, devices based on

superconductivity effects demonstrate how function can be wrought from

phenomena. Submicrometer Josephson Junction (JJ) technology has been used to

construct an A/D convertor using only one JJ device per digitized bit. 8 This

significant improvement in functional density arises not from the cleverness

of the device architecture, but directly from the behavior of very small,

very cold things. A similar strategy must be used to leverage nanometer

physics into complex device function.

The negative effect of scaledown on signal-to-noise ratios emphasizes

the need for a generic method for managing soft and hard failures within

ultra-scaled circuits. Current efforts to develop fault-tolerant

architectures at the system and processor levels must be extended to include

fault management at the most basic levels of functionality. Finally, to

route around defects, increase adaptability, and avoid early obsolescence,

chip functions must be reconfigurable. This capability will also eliminate

many design turnaround problems by softening the distinction between software

and hardware.

In summary, successful next-generation chip architectures must be based

on minimal connectivity and sophisticated active devices. Future chip

functions must be pliable and fault-tolerant. In the next section we discuss

candidate devices and architectures for meeting these criteria.

p,
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III. NANOELECTRONICS

The complete approach to meeting the postmicroelectronic challenge of

next-generation IC technology is called Nanoelectronics.9  (The more

descriptive term, nanoelectronics, has become popularized over the original

term "ultrasmall electronics.") This section reviews the basic concepts of

nanoelectronic devices and architectures.

1. Nanoelectronics Technology

1.1 Quantum Coupled Devices

Conventional electronic devices are designed from a set of

approximations that allow explicit quantum mechanical considerations to be

ignored. However, as dimensions scale below 0.1 pm, new effects associated

with the wavelike nature of the electron begin to dominate the mechanisms of

charge transport. Recent advances in materials science have made it possible

to construct devices that demonstrate strong quantum effects. These non-

classical phenomena, including quantum size effects and resonant tunneling,

can be used to build a new technology base for nanometer electronics.

Semiconductor technology now , "ovides the means to construct electronic

nanostructures. Heterostructure techniques combine dissimilar semiconductors

layer-by-layer to tailor the effective electronic band structure of the

resulting composite on an atomic scale. The energies and densities of

electron states can be engineered into a heterostructure by controlling the

stoichiometry of the final chemical compound. Popular fabrication methods

include molecular beam epitaxy and metal-organic chemical vapor deposition.t0

As a heterostructure is grown, abrupt changes in composition can be used to

shift electronic material properties. Unlike broad, fuzzy p-n junctions, the

effective potential variations across a heterostructure are sharply defined.

Although the required processing technology is still under development

at Texas Instruments and elsewhere, we will take nanofabrication as a given

and consider a nanoelectronic structure that incorporates most of the

relevant physical phenomena required to build a useful nanometer-sized

device. These physical properties will form the basis of compatible logic

and architecture systems. We consider two nanometer-sized cubes of

semiconductor that are embedded in a sea of another material as shown in

16
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Figure 3. For clarity, we will use the aluminum gallium arsenide (AlGaAs)

material system in our discussion. The energy diagram for the possible

electron energies in this structure is shown in Figure 4. Due to the

difference in the electronic properties of GaAs and AIGaAs, the conduction

electrons within the GaAs material are surrounded by an electrostatic

potential barrier. In addition, the small size of each cube squeezes out

most of the normal energy states of conduction band GaAs, leaving only a few

sharply defined energy levels, as shown in the potential well diagrams.

State quantization due to dimensional scaling is known as the quantum size

effect (QSE).11 To first order, the number of distinct electron energy

levels within a potential well is inversely proportional to the square of the

well width. Using the dimensions of Figures 3 and 4, our hypothetical GaAs

structures would have only a few bound states, as shown. The QSE can have a

controlling influence on device properties even if only one or two physical

dimensions are quantized.10 As we will see below, the exploitation of the

QSE is basic to nanoelectronics. Physical structures that display size

quantization effects are called quantum wells. Three-dimensionally quantized

structures, like our quantum cubes above, are called quantum dots. 12

Classically, electrons could be trapped forever inside potential cages.

However, the wave properties of electrons enable them to escape from quantum

wells by the process of resonant tunneling.11

The resonant nature of electronic tunneling between quantum wells also

provides the mechanism with which to control charge transport. Charge can be

exchanged between quantum wells if:

(1) They are in close proximity so that tunneling effects are strong,

(2) Energy is conserved,

(3) Momentum is conserved, and

(4) The destination state of the transported charge is unoccupied. *0

These conditions are satisfied when GaAs-AlGaAs quantum wells are spaced

by less than a few hundred angstroms, and a compatible occupied state in one

17
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Figure 3. GaAs quantum dots embedded in a sea of AJGaAs.
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Figure 4. Potential energy diagram for conduction bands of quantum dots.
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well is in energy resonance with an empty state in the other. A schematic of

the charge transfer process between two quantum dots is shown in Figure 5.

As shown in Figure 5, energy is easy to conserve in tunneling between

identical quantum wells, since symmetry requires the allowed energies in both

wells to be the same. The tunneling probability between dis-imilar or biased

wells is determined by the degree of alignment or resonance between energy

levels. In principle, the communication between dis.onant quantum wells can

be reduced to an arbitrarily small value.

The quantum size effect and resonant tunneling provide all the essential

phenomena required to control the direction and amplitude of charge transport

in nanostructures. The QSE forces bound charge to take on discrete energy

values in the form of quantum levels. RT is ther used to exploit this

quantization as a means to confine or direct charge flow between quantum

wells. Devices that operate ostensibly through the use of the QSE and p

resonant tunneling effects are called quantum coupled devices. Preliminary

ideas for devices based upon resonant tunneling have been conceived. 9  In

addition, the empirical and theoretical understanding of transport in quantum

devices has increased considerably in recent years.12,13

1.2 Cellular Automata Architectures

Effective utilization of the scaling advantages of quantum coupled

devices requires the development of equally scalable device architectures.

This requirement is best satisfied by the cellular automaton. 14 Basically, a

cellular automaton (CA) is a collection of simple active devices that

interact in discrete space and time. Each active device, or cell, is placed

at one of the vertices of a regular lattice as shown in -igure 1. The

dynamics of a CA is controlled by the independent, but highly parallel,

interaction of each cell with its local environment. The function of each

cell is specified by a rule of interaction analogous to a state transition

lookup table. Cell rules are usually deterministic functions of the

instantaneous value of the states of nearest-neighbor cells. However, cell

types may be defined that allow direct interaction with more distant cells

and that include long-term memory. More elaborate models can test the impact

of clock skew and fault tolerance by allowing cells to interact

asynchronously and ohey time-dependent rules. Spatio-temporal "snapshots" of

19
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Figure 5. Elastic (strong) and inelastic (weak) tunneling between quantum

wells.
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the dynamics of several one-dimensional cellular automata are shown in

Figure 6. All these examples demonstrate nearest-neighbor interactions I
between two-state cells. Light areas (paper) represent state "0" cells,

while dark areas (print) correspond to state "1" cells. This simple class of

CA displays a variety of behaviors ranging from time-independent to nearly

chaotic time evolution.

The most basic characteristic of a CA is the formal limit on the range

of direct coupling between lattice cells. Typically, cells are only allowed

to influence the dynamics of nearest and perhaps next-nearest neighbors.

Thus, CA embody the precepts of eliminating long interconnects while also I

explicitly defining the behavior of a cell in terms of a tightly coupled

local environment.

Computation in a CA results from the adjustments each cell makes to its

internal state in response to changes in the state of its local environment.

During a computation, all cells act in parallel, using their initial state ,. d

and individual interaction rules to calculate future lattice states. Despite

minimal connectivity, many CA are known that can perform all the general

logic operations required to build a computer. The Game of Life is a popular

example of a two-dimensional CA that can be set up to perform general-purpose

computation.15

1.3 Combining Quantum Coupled Devices and Cellular Automata

The close analogy between quantum coupled device arrays and cellular

automata can be seen by considering the one-to-one mapping of quantum devices

with CA lattice cells. An automaton cell is completely defined by its

interaction rule, which determines how information flows through the network.

In an analogous fashion, the electrostatic coupling between quantum wells

provides a mechanism for tailoring charge flow between wells. Conditions of

resonance and dissonance between quantum structures are equivalent to

connections and isolations between cells, respectively. As shown in

Figure 7, the strength of interwell coupling can be modulated strongly by the

electric fields that are broadcast from each well to its neighbors.

Lithographic tuning of quantum well energy levels can be used to express the

variations in cell type and connectivity. We call the combination of quantum

devices and CA a quantum cellular automaton. -
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Figure 6. Time evolution of cellular automata.
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IV. SUMMARY OF SIMULATION TOOLS DEVELOPED

Special software and hardware simulation tools were developed to support

the study of one- and two-dimensional cellular automata. Software was used

to explore new cellular auLomata concepts while high-speed hardware was used

to accumulate detailed statistical data on particular model systems. The

combination of interactive software with high bandwidth accelerators provided

an excellent workstation environment for this research.

1. Software Simulation Tools Developed

A Texas Instruments Professional Computer (TIPC) was used to support the

software simulations conducted during this program. To maximize simulation

throughput, many of the basic simulation/analysis routines were written in

assembly language. Pascal was used to link routines and manage the real-time

user interface. We found this software combination ideal for rapid testing

of ideas as well as for supporting longer-term background simulations. A

hardware random number generator was added to accelerate simulations

involving asynchronous and stochastic cell interactions. The final software

environment allowed the simulation of one-dimensional cellular arrays of up

to 512 cells, and two-dimensional arrays of up to 128 by 128 cells.

Simulation rates as high as 10,000 cell operations per second were obtained

through software pipelining. The graphics software limited the visual

display of large array simulations to a maximum of four array-updates/second.

In the typical simulation, abstract cells would be located on a square

lattice and constrained to interact according to predefined rules. Each cell

could be represented by either a combinatorial logic function or lookup

table. The rule associated with a given cell was used, along with a

knowledge of the state values of neighboring cells, to compute the future

state of that cell.

To permit real-time investigations of time-dependent rules and inputs,

function keys were defined which enabled a simulation to be paused, altered,

and then continued. Programmable levels of noise could be added to

individual cells, local cell groups, or the entire lattice. This latter

facility was used when testing the sensitivity of array dynamics to random

fluctuations in cell behavior. To assist in the spectral analysis of the

24



spatio-temporal behavior of each model, an option was provided for performing

either the spatial Walsh transform of a group of cells, or the temporal Walsh

transform of a single cell, in parallel with each simulation step.

2. Hardware Simulation Tools

The detailed characterization of a wide variety of cellular automata

required greater simulation throughput than that available from software. As

shown in Table 1, significant speedups relative to conventional computers are

possible through the use of data pipelining and parallel approaches to

cellular automata simulation. To this end, we designed and constructed

several hardware simulators, to support the high-speed simulation of one- and

two-dimensional cellular arrays. These machines were used to conduct

detailed characterizations of several interesting CA models that were

developed using the software workstation. With average throughputs as high

as 1.2 billion cell operations per second, this hardware provided 1OOX to I-

1O,OOOX performance speedups over software simulation alone. These speedup

factors were found essential to accumulating meaningful statistics on the

models studied during this program. We estimate that the data collected

using these simulators would have required over 3000 years of continuous

simulation on a single personal computer.

Table 1. Relative Performance of Cellular Automata Simulation Architectures

Architecture Throughput Normalized

Von Neumann N.M.R N.R %

Pipelined N.M N

Systolic M.R R

Full Parallel M i

Legend

N Number of cells in simulated array
M Convergence time
R Number of connections per cell 1*
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Block diagrams of the systems are shown in Figures 8, 9, and 10. The

machines schematized in Figures 8 and 9 were based on pipelined architectures

and included provisions to vary in real-time: (a) the interaction rules

assigned to each array cell, (b) the synchronization between cell state

transitions, and (c) the degree of random noise associated with each cell

state. The simulator shown in Figure 10 operated in a fully parallel

fashion, but was designed to simulate only fixed-rule, noiseless, one-

dimensional cellular automata.

A basic tenet of our research concludes that useful nanoelectronic

device architectures will be characterized by very short-range connectivity

patterns. For this reason, we restricted intercell connections, as simulated

by the hardware, to next-nearest-neighbor cells or closer. Under this

restriction, all simulation models could be mapped into the cell arrays shown

in Figure 11. The ends of each simulated array were connected to form a

simple ring or torus as shown. The ring/torus structure provided periodic

boundary conditions to each cell and minimized end effects during simulation

of very large arrays. However, since our designs also allowed each cell to

operate according to its own interaction rule, it was a simple matter to

create constant-valued perimeter cells which then emulated fixed boundary

conditions. p_

To maximize throughput, each simulator used lookup tables to hold data

and control information. One set of tables served as a sequential state

machine to control processing activities. Additional memory retained cell

states and cell interaction rules. To update the state of an array of cells, "

small groups of cell states were bundled together to form a physical memory

address. These addresses were then applied to the rule tables to compute in

one clock cycle the next state of each cell group. Once a simulation model

was microcoded into local memory, the machine was initialized with cell data

and then allowed to operate independently under an internal clock for a fixed

number of iteration steps before software control was returned. The partial

autonomy of the hardware dramatically reduced the time overhead associated

with data exchange to and from the host computer. The details of the

simulator shown in Figure 10 are being prepared for publication in The Review

of Scientific Instruments.
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Figure 11. Ring and torus boundary conditions for next-nearest-neighbor
cellular automata. Lines indicate direct intercell
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V. CHARACTERIZATION OF ONE-DIMENSIONAL CELLULAR AUTOMATA

Nearest-neighbor coupled cellular automata (CA) are characterized by

local connectivity, simple cell interactions, and discrete dynamics in space

and time. Despite the simplicity of this CA class, a wide variety of complex
behaviors can be observed in the short- and long-term dynamics. An

understanding of the structure of state bifurcations in noisy cellular

automata may lead to methods for constructing fault-tolerant cellular

automata computers. A noise analysis could be used to determine the effect

of thermal fluctuations and cosmic rays on models that emulate an actual

technology. Therefore, it is useful to characterize CA to determine their

sensitivity to stochastic events.

As part of our research, nearest-neighbor connected cellular automata

were characterized to determine the limiting time evolution of these models.

The number and size of state attractors were determined as a function of rule I

type and lattice size for all 256 interaction rules.

To quantify the noise sensitivity of these systems, Markov transition

matrices were tabulated based on Monte Carlo experiments on all rules and for

all array sizes up to 28 cells in length. In accomplishing this objective, .'

we determined the following properties of nearest-neighbor coupled, one- .

dimensional cellular automata:

(1) The minimum set of rules that span the entire class of behaviors.

(2) The periodicity of all stable points in the state space of each N

automaton rule.

(3) The probability that a random initial cell pattern will result in a

particular long-term evolution.

(4) The resistance of all rule types to low rates of single event

upset.

The quantitative results of these measurements are shown in Appendices A

through F. These results are being prepared for publication.
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1. Theoretical Development

1.1 Basic Dynamics of A Cellular Automaton

We can consider the instantaneous state of a cellular automaton to be

represented by a state vector S, with dimensionality equal to the array's

size. Starting from the current cell state configuration S(t), the time

evolution of any CA can be found from

S(t+ 1) = OR[S(t), (1)

where OR is a globally applied operator that carries out the iteration rule R

assigned to the array. The recursive application of the rule operator can be

written as ORN such that

For time-irreversible CA, all initial patterns S(O) are mapped by the
action of the rule operator into a set of periodic patterns called

Attractors, or alternatively, Limit Cycles. This behavior is shown%

schematically in Figure 12. These repeat sequences are characterized by the

equation,

S(t+L) = S(t) = OR(S(tl.

In the equation above, Li is equal to the length of the relevant limit cycle.

We can further define a vector L, which is composed of the the distinct
limit cycles associated with a given CA rule and array size. It is clear

that for a deterministic CA, once entered, te dynamics cannot exit a limit

cycle. That is,

0t . (4)

(It
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Figure 12. Schematic representation of limit cycle behavior for time
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In the presence of noise, the rule operator, OR, must compete with
stochastic events which destroy dynamic determinism. A CA composed of
strongly attractive limit cycles will tend to resist minor fluctuations in
state. A noisy system characterized by weak attractors will tend to hop
among the possible limit cycle states in a more chaotic manner. We have
summarized in Figure 13 some of the space-time events that can occur in
dynamical systems. Deterministic CA are primarily Class C, with the behavior
becoming increasingly Class A with increasing levels of cell-state noise.
Attractor basins span essentially all state space in the general case. Class .
B dynamics such as singularities, which precisely conserve state space across - u
a stute transition, are rare. With reference to Figure 13, the resistance of
a CA rule to noise is quantified as the fraction of Class A, B, and C events
that make up the total state trajectory in the presence of noise.

Any CA can be made indeterministic by adding noise to the cell states.
Random changes in cell state simulate physical events including thermal

fluctuations and cosmic rays. A noise-sensitive CA has the potential to form
the opposite of an attractor; a Repeller. It is usually not possible to
predict the noise sensitivity of a CA network on the basis of an examination

of the cell rules. In most cases, empirical determination of the fault- -

tolerance of each model is required.

An attractor maps two or more initial state patterns into a common
future tra'ectory. If initial states are distinguishable only by noise, then

an attractive CA can recover from noise events in a natural manner. In
contrast, repellers formed by noise will be highly sensitive to noise if
their basic indeterminacy is due to some stochastic process.

In contrast, the presence of noise in either the cell interaction rule
or cell state can lead to the opposite effect: an ever-increasing bifurca-

tion of state trajectories until, at some level of noise, the system becomes

chaotic.
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1.2 State Attractors as Elements of a Markov Chain
A finite state Markov Chain of n attractors may be defined by a

stochastic irans;tion matrix P where

(5)
P1 1  P1 2  OO0 Pn

P21  P22  *
P0

PnI 000 P I-"

and Pij represents the probability of a transition from attractor i to

attractor j. We define an attractor probability Vi(t) as the probability

that the system occupies state i after t discrete time units have elapsed.

These time units are assumed to be large compared with the longest limit

cycle in the state space. Based on the definition of Vi(t), causality

requires that

(6)

V (t) I ,I.

and

(7) %

V (t +I) _ V (t)P fort 0, , 2 . %

We can combine the Vi(t) components into an attractor probability vector
V(t). This gives the following compact representation for the noise-driven-,

interaction between attractors.

'p.
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V(t+ 1) = V(t)P (8)

V(t) V(O)Pt, (9)

where pt is defined as the tth power of the matrix P.

Therefore, the probability that the system occupies a given attractor

after t time steps is given by postmultiplying the initial (or current)

attractor probability distribution V(O) by a power of the basic transition

matrix P. Once the Pij have been determined, only the initial probability

distribution for attractors need be determined to completely specify the

long-term response of the CA to a given level of added noise.

Progressively higher powers of the transition matrix will approach a

limiting matrix P-, if the system is characterized by time-independent

probabilities.

The volume of state space traced out by a deterministic CA cannot grow

with time. The rules that describe time-irreversible, or dissipative

cellular automata (CA) contract, on average, the volume of state space

traversed by the system dynamics. Therefore, the trajectory of a dissipative

CA through state space must wither down to either a closed path or a single

point. The limiting behavior is called an Attractor (A) or, alternatively,

a Limit Cycle (L). The initial transient dynamics of a CA may be complex,

but all initial points in state space must approach and finally reside on an

attractor. The length of an attractor (Li) is given by the number of states

that make up the cycle. Deterministic CA generate attractors that are

invariant under the dynamics and can neither cross nor be decomposed into

other attractors. The transient paths that lead to an attractor are called

Basins.
'.

The strength of an attractor is measured by the volume of state space

absorbed by the basin paths. It follows that a CA characterized by large
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basins, i.e., a few strong attractors, requires relatively less information

to be supplied to an initial cell pattern for the prediction of the final

attractor observed. For example, a CA with a single attractor, such as

Rule 255, given in Appendix A, requires no preselection of cell state

patterns to predict with certainty the future dynamics of the automaton.

However, rules including Nos. 18 and 22 are characterized by numerous

attractors of various basin sizes. Predicting a particular limit cycle

requires careful specification of the starting cell configuration in these

latter examples.

From Information Theory, we can quantify the degree to which an

attractor can be predicted from an initial starting point in state space as

n(10)

0SR= V/n Vr

where Vi is the volume of state space absorbed by attractor i, and n is the

number of attractors in the space of a rule R, size S automaton. A more

uniform measure of predictability, which normalizes Equation 10 to its

maximum value for each rule type and automaton size, is given as

(11)

V. ln V.
= L

SR = In(n)

For a CA with more than one attractor, the value of ISR ranges from zero

(no information required to specify the final attractor) to unity (maximum

information required to predict the final attractor). The future of a

single-attractor CA is pattern-independent. ISR for a single attractor is

defined as zero.

2. Experiments

To measure the effect of noise on the dynamics of one-dimensional CA, we

performed Monte Carlo tests on a large class of nearest-neighbor coupled

automata. Due to the vast simulation space available, we restricted our
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investigations to rule-homogeneous CA. The high-speed pipelined processors

described in Section IV were used to conduct all the reported experiments.

The path of the dynamics through state space for a single simulation run

is shown schematically in Figure 14. The experiment consisted of choosing an

initial pattern of cell states, and then following the array dynamics until a

repeating pattern, the attractor, was detected. After this initial attractor

was recorded, a single, randomly selected cell state was flipped from 0 to I

or vice versa. The new cell pattern was allowed to evolve to a second

attractor. For arrays less than 16 cells in length the dynamics were studied

for every possible starting configuration of cell states. Arrays longer than

15 cells were initialized by random state patterns to provide an unbiased

sampling of the exponentially larger state space. For the larger array sizes

we conducted 30,000 random samples of state space to accumulate reasonable

statistics. S

We analyzed the set of nearest-neighbor coupled CA rules to determine

the minimum set of interactions required to span all behaviors. The complete

set of canonical forms for these rules is given in Appendix A. Graphic

examples of the transient dynamics of all 256 nearest-neighbor rules are

given in Appendix B. Using the symmetry of periodic boundary conaitions, we

found 88 conjugate and reflection symmetric rule-groups. For example,

reference to figures in Appendix 8 shows that Rules 14, 84, 143, and 213 lead

to identical dynamics after reflection and/or conjugation of the observed

patterns. As a result, a set of 88 rules completely defines the possible

dynamics of one-dimensional, nearest-neighbor CA with periodic boundary

conditions. We examined the dynamics of all 88 independent rules and array

sizes between 3 and 28 cells in length.

3. Markov Results

Due to the large amount of reduced data compiled during our Markov

simulations, we have divided the results and included them in this report as 5

Appendices A through F.

..
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Figure 14. The effects of noise on the dynamics of nearest-neighbor
coupled, one-dimensional CA.
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VI. MULTIVALUED LOGIC IN QUANTUM COUPLED CIRCUITS

Sophisticated device behavior, grounded in the basic physics of

nanometer-sized structures, could help reduce the number and range of device

interconnects. Enhancing device sophistication is equivalent to embedding

more states, and possibly more state interactions, into each active element.

A scalable poly-state device could increase the density of stored data and

control information. In principle, fewer elements, with fewer interconnec-

tions would be required to express the same function. This section describes

our first steps in developing a multivalued logic system compatible with the

basic characteristics of quantum coupled devices. Conventional multivalued

algebra is reviewed, and new logic operators compatible with quantum devices

are developed. Suggestions are made for possible embodiments of ternary logic

gates in nanoelectronics structures.

1. Introduction

An inherent problem with ultra-integration will be the further decrease

in our ability to access directly a given functional resource at all levels

of complexity. For a minimum feature size (1/S), resources may grow as fast

as S2 and S3 for two- and three-dimensional circuits, respectively. However,

on-chip access methods are essentially peripheral, so the dimensionality of

I/O access may always be at least one dimension behind component topology.

One approach to reducing I/O bottlenecks, while avoiding interconnect-

intensive architectures, would be to develop sophisticated devices that

perform more complex logic functions than transistor-like switching.

Increasing device complexity amounts to extracting greater functionality from

known physical phenomena. For example, Josephson Junction (JJ) technology

allows an A/D convertor to be constructed using one JJ device per digitized

bit.8  This significant improvement in functional density arises not from the

cleverness of the device architecture, but simply from the physics of very

small, very cold things. Ideally, increased complexity should arise

naturally from the basic physical properties of the device technology. In

our research we considered a method for increasing device complexity by

developing a multivalued logic system based on quantum device properties.
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1.1 Advantages of Multivalued Logic Approaches

There are technologically independent arguments suggesting that 2.718

(Naperian basis) represents the optimal switching network radix.16  Thus, on

theoretical grounds, 3-valued, or radix-3 arithmetic should be preferred over

binary. However, most abstract analyses neglect practical technological

contraints. The cost of multivalued (MV) logic elements will be very

dependent on the gate technology. To date, there have been insufficient

practical advantages to justify the use of high-radix logic systems over the

simplest, 2-valued standard. Realistic performance comparisons between

actual M-valued hardware and its binary counterparts must assume a common

technology base.

The most important benefit offered by MV logic is the potential to

reduce interconnect complexity by embedding more states, and more

functionality, within the same number of switching elements. Analysis shows

that even a cost-inferior M-valued system may win out over a binary scheme

when scaling problems undermine performance of 2-valued networks. For

example, ternary (3-valued) multipliers have been conceived that contain 60%

fewer interconnects and 20% fewer devices than do equivalent binary

circuits.1 7 MV logic systems trade device count for device complexity. With

scaledown, the savings in interconnect area can outweigh the cost of

increasing device complexity.

2. Theory of Multivalued Algebra

To investigate the potential for utilizing MV logic elements in

ultrascaled circuits, we first review the basics of MV algebra. Consider the

general multivalued, N-input, single-output logic gate shown in Figure 15.

The gate realizes physically some function F of the input values Ii.

For simplicity, we assume that the possible input and output values belonged

to the same alphabet Q such that,

(Q) = [EI,E2,..•,EM) Symbol alphabet and I/O definitions

Inputs 11..IN E (Q) for an M-valued, N-input

Output S E (Q) logic function F.

S = F(I1,12,...IN)
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where the Ei are the valid symbols that can appear on any line attached to

our hypothetical gate. For example, a 2-valued propositional calculus might

define El as "T" for "True" and E2 = "F" for "False." In binary switching

theory the two symbols El and E2 are usually labeled "0" and "

respectively. In a physical structure these symbols would correspond to

measurable values such as steady state voltage or current amplitudes.

The number of different multivalued functions of N-input variables was

easily determined. We defined a function space IM,NJ as the set of all

possible deterministic functions that could be realized by the multivalued,

N-input gate in Figure 15. In general, there are MN different combinations

of symbols that can be applied to the gate input lines. When specifying the

internal, deterministic function F, we may associate any one of the M

alphabetic symbols Ei with each possible input combination, [11,12,... ,IN}.

The total number R of unique functions that cou/d be defined for a

multivalued, N-input, single-output gate is equal to:

R = (M)L Size of the function space [M,NJ

where L = MN for an M-valued, N-input, single-output logic

gate.

Table 2 shows how the size of [M,N]-space varies with M and N.

2.1 Functional Decomposition in Multivalued Logic

Table 2 shows how increasing the number of allowed symbols within a

logic system can dramatically increase the function space for the algebra.

One consequence of the vast functional territory of M-valued, N-input logic,

is that it is impractical to construct unique device types for all but a

small fraction of multivalued logic functions. For example, the modern

arithmetic logic unit (ALU) represents a sophisticated gate that can be

programmed to perform many of the more useful functions of two or more

inputs. A popular 2-valued ALU is shown in Figure 16. Although quite

useful, this building block provides directly only 32 of the 16512 possible

functions within the 12,91-function space of the system. Even the collection

of gates shown in Figure 17 provides directly only 12 of the 16 possible

single-output binary functions of [2,21-space.
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Table 2. Function Space for Various Numbers of Inputs (N) and Output
States (M)

M

N

2 3 4 5

1 2 27 256 3,125

2 16 19,683 4 x109  3x 10 1 7

3 256 7 X1012  3 x1038  2 X1087

4 65,536 4 X 1038 4256 51024 IN-

.k
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Figure 16. Logic symbol and function table for a popular (LS181) ALU
module.
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Since direct realization of arbitrary multivalued functions is, at best,

technically prohibitive, attempts are made to discover minimum sets of

functions that can be combined and/or sequenced to represent any required

function. Fortunately, P-valued logic functions of two input variables exist

that can be combined to express any M-valued function of N variables, for any

value of P greater than or equal to M.

2.2 Well Known M-Valued Algebra

Several popular logic systems have been discovered that are capable of

expressing any M-valued function of N variables. Necessary and sufficient

conditions for functional completeness are also known.18 Perhaps the most
studied of the complete sets of M-valued algebras is defined by the following

operators:

Popular M-Valued Logic Operators

Operator Operation Function F Equation

Min Ii Min 12 = Minumum of [11,12} Ila

Max I1 Max 12 = Maximum of (11,12) ilb

Cycle II2 (Ii plus 12) module M llc

Complement Ii- (M-1) minus Ii lid

Match <II,Ej> EM if II = Ej lie

Match <II,Ej> El otherwise lie

where

M = number of symbols in alphabet, Monotonic definition of (12) .9.

Ii and 12 are inputs, M-valued alphabet Q. ",

F is the function result, and

Ej = j-i, so that Ei < Ej for any i < j.

For simplicity, we defined and ordered the symbol alphabet Q so that direct

arithmetic operations can be used to comprehend the function of each I

operator. Tables 3 and 4 list the "truth" tables of these operators for

binary- and ternary-valued algebra, respectively. Inspection shows that the
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I.

2-valued operators of Min, Max, Cycle, Match, and Complement are similar,
I

respectively, to the familiar binary logic functions of AND, OR, EXOR, EXNOR,

and NOT. The "Max" and "Min" operators produce, respectively, the greater or

lesser of the two input variables 11 and 12. It is interesting that the 2-

valued "AND" operator of onlyifboth is more generally represented by the lesser

of function "Min". The unary Match operators perform "symbol test" on single

variables and could be recast using the Dirac delta function as,

Match <II:Ej> = (M-1) times 81j Match Operator (13)

where 81j = 1 if Ii = Ej in terms of Dirac

51j = 0 if II * Ej Delta functions

The Identity symbols for this set are El=[O) and EM=[M-1}. It is easily

shown that the operator set of Equation (11) satisfies the following

relationships when applied to the two input variables X and Y,

Idempotence: X Min X = X

X Max X = X

Absorption: X Max (X Min Y) = X

X Min (X Max Y) = X

Null Symbols: X Min EM = X .
X Max El = X

Universal Operation: X Min El = El 
5

X Max EM = EM

DeMorgan's Laws: X Min Y = (X- Max Y-)-

X Max Y = (X- 
Min Y-)-

Commutativity: X Max Y = Y Max X

X Min Y = Y Min X

The combination of Equations (11a) and (lb) satisfies the distributivity

condition:
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Distributivity: X Max (Y Min Z) = (X Max Y) Min (X Max Z)

X Min (Y Max Z) = (X Min Y) Max (X Min Z)

It is also straightforward to prove that the set of operators defined by

Equation (11) is functionally complete. In particular, a canonical form for

any M-valued function can be written as

N Sum-of-products (14)R-1!

F SMin <1 : C > form of any
k=o =M-valued function F.

N

where Ha = a Min a2 Min... Min a N
j =1

R-1

and -- bk b Max b Max Max bax !
k=O

The Sk are the function outputs associated with each of the R input

combinations [II..IN). The the Ckj are defined by

Defining equations
ki + MCk2 + M CQ + ... M C kN for the Ckj.

Equation (14) demonstrates that the proper choice of constants, Match,

Min, and Max functions allows any M-valued function to be decomposed into

[M,21-space logic operations. As a concrete example, we show in Table 5 a

randomly selected {3,21-space function. Also shown is the combinatorial form

for this function in terms of the operator set of Equation (11). Due to the

arithmetic definition of the M-valued alphabet, the combinatorial form in

Table 5 does not need to take explicit account of those terms that evaluate

to EI=O.

2.3 Completeness and Prdcticality in M-Valued Circuits

The functional completeness of each of the binary logic systems (NANDI,

(NOR), [Majority-Vote), and (AND, EXORI is well known. Any one of these sets

of mathematical operations is sufficient to express any arithmetic operation,

51 S

- - - ~ J~- t6



Table 5. Truth Table and Canonical Form for Randomly Selected 13,21-Space

Function

k 11 12 Sk=F(k)

0 0 0 0

1 0 10

2 0 21

3 101

4 11 0

5 12 0

6 2 0 2

7 2 1 0

8 2 2 2

F= [0 min (11:0> min <12:0>)] max ..

[0 min (11:0> min <12:1>)] max ..

11 min (11:0> min <12:2>)] max ....

[1 min (11:1> min <12:0>)] max
[0 min (11:1> min <12:1>)] max

[0 min (11:1> min <12:2>)] max

[2 min (11:2> min <12:0>)l max ..

[0 min (11:2> min <12:1>)] max ....

12 min (11:2> min <12:2>)]

Canonical Form
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including, of course, the operations required of general-purpose computers.

Within each system, each logic operation represents a necessary component of

a complete algebra. However, a computer based solely on one of these sets

would be only a laboratory curiosity. Practical computers utilize an over-

specified set of functionally complete logic operations to maximize the

functional density of a desired circuit. For example, it is neither

necessary nor cost-effective to use a two-input EXOR gate to serve the

function of a simple inverter (Unary Complement). Therefore, a repertoire of

more-than-sufficient operators, (AND, NAND, NOR, OR, NOT, EXOR, EXNOR}, is

used in the design of actual logic circuits. Similar arguments can be made

for the need to employ more-than-sufficient MV logic components.

2.4 Overspecification in M-Valued Algebra

Neither the "Cycle" nor the "Complement" operator appears in the

canonical form of Equation (14). Therefore, the operator set of

Equation (11) is overspecified in the sense that not all of the operators are

essential to the representation of combinatorial functions.

Moreover, our examination of Equation (14) showed that even the

operators that were used to compose the canonical form are themselves

overdefined. To study operator overspecification, we employed four

hypothetical operators labeled "&", "#", "@", and "%" and rewrote

Equation (14) as

Sum-of-products (15)

R- I N form of any M-valued
F S [ ( ( CkJ function F, using oper-
k=O J=I

ators @, %, &, and #.

N

where I la, = a &a 2 &.. &

J=I

R- I '

and N k = , # hI  # . # R_
k=O
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We found that since the Match operator can only produce a value of El or

EM, the new "&" operator need not be defined for any input combination that

contains any symbols other than El and EM. By analogy with Equation (14), we S

defined the "&" operator as simply the original Min function, but with

arbitrary "don't cares" associated with those input terms that could not

normally occur. By using this definition for "&," the "#" function could be

similarly defined as the Max operator with suitable "don't care"

substitutions for its irrelevant input cases. Similar reasoning was used to

specify the @ operator. Lastly, we redefined the Match operator as a more

general two-input operator "%," so that two-input variables can be tested for

equality. The final set of the new operators for 13,21-space is shown in 5

Table 6. It is noteworthy that the "@" operator can replace the "&" function

if we choose particular values for some of the arbitrary outputs of the "&"

operator. Using the occurrence of "don't cares" in the internal workings of

the canonical form, several other sets of sparse, functionally complete P

operator sets may be devised.18  These results demonstrate how little

structure is required to form combinatorially complete algebras. We used

this new algebra to prove the functional completeness of simple multivalued

quantum coupled circuits.

3. M-Valued Logic in Quantum Coupled Circuits

3.1 Navigating in a Quantum Mechanical World

As interwell dimensions scale to the order of the Bloch wavelength

(roughly 300 A in many semiconductors), the confinement of electronic charge

becomes difficult. As discussed in Section III, the scaledown of physical

dimensions causes an unavoidable coupling between devices that store or

manipulate the flow of charge. The leakage of electronic charge from a

potential well is called electronic tunneling."l For this reason devices, such

as transistors, which rely on potential barriers to gate, direct, or confine

electric charge, cannot scale below roughly 0.1 pm.19

It is apparent that the nanometer-sized world is rather nonclassical,

since electronic boundaries tend to become porous and electrons become

claustrophobic. However, classical laws are not entirely ignored in ultra-

scaled structures. In particular, the conservation laws of energy and

momentum still govern the changes in the average electron position and %

N
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Table 6. Combinatorially Complete Set of Ternary Logic Operators. Entries S
marked "X" may be arbitrarily chosen as 0, 1, or 2.

Inputs "%" "&" "@" "#"

I1 12 Ii % 12 II & 12 1I @ 12 11 # 12

0 0 2 0 0 0

O 1 0 1

0 2 0 0 0 2

1 0 0 X X I

1 1 2 X X X

1 2 0 X X X

2 0 0 0 0 2

2 1 0 X -

2 2 2 2 2 x

S
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energy. For example, an electron can easily tunnel into a neighboring

"quantum coupled" well only if its initial and final well energies are the

same. Energy is easy to conserve in tunneling between identical quantum 3

wells because symmetry requires the same allowed energies in either well.

However, as shown in Figure 5 (Section II), the tunneling probability between

dissimilar wells is determined by the relative position of the energy levels

within the two wells.

3.2 Multivalued Quantum Logic

One of the more intriguing features of spatial quantization of charge

provides us the ability to engineer several sharply defined energy states

within the same quantum well. To first order, the number of distinct energy

levels within a well is inversely proportional to the square of the well

size. The relative energy of the well states can be controlled by the

careful selection of semiconductor materials, or by using mixed-material,

superlattice techniques. Thus, materials science and lithography can be used

to adjust the number and energy of the resonant energy levels distributed

among a collection of quantum structures. The energy resonance or dissonance

between well states controls the strength and direction of charge flow.

Quantum wells are, in principle, very simple physical structures. Since

quantum wells need not be formed near a ground plane, it is possible for the

charge in a neighboring well to define in part the potential energy of a

"floating well." This electrostatic coupling can be thought of as the input

terms of a logic function carried out by the modulated resonant tunnelingIN

structure. The electrostatic potential of a quantum well will also depend on

the net charge bound by the well. However, we will neglect such self-

consistency effects here.

3.3 Ternary Quantum Logic Structures

Quantum devices can be constructed such that each physical structure

contains one or more discrete energy states. The energy diagram for an

abstract, three-dimensionally quantized quantum well or dot might be as that

shown in Figure 18. If we neglect self-consistency effects, the energy of

charge placed into the well remains relatively constant i ntil the lowest

energy level is filled. Above this capacity, new charge will reside in the
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Figure 18. Quantum jumps in charge energy due to quantum size effect.
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next highest energy state, as taught by the Pauli Exclusion Principle. Now

assume that we have defined our device structure such that the addition of

two units of charge just fills the lowest energy level. If we equate the

level of charge contained in a quantum well with a measure of information

stored in the structure, then the physical value of our multivalued alphabet

as defined by Equation (12) can be expressed physically as:

El = 0 units of well charge Representation of an

E2 = I unit of well charge M-valued alphabet by

E3 = 2 units of well charge quantum well charge.

The logical state of the well can be expressed as a function of the charge

carried by the energy levels of the well.

Consider the case where the well charge is obtained by absorbing the

charge from two adjacent "input" wells. For various quantum well widths,

several distributions of charge over the well energy levels may result. The

charge distribution for several well types is shown in Table 7. It is seen

from the table that the quantity of charge contained in the second level of

well type B represents the minimum of the two added charge packets, QI and

Q2, except for the case where Q1 = Q2 = 1 unit of charge. Similarly, the

charged accumulated in the first level of well type B is equal to the maximum

value of the two charge inputs, QI and Q2, except for the case where

Q1 = Q2 = El = 1. In this isolated case the charge densities in Levels LI

and L2 represent the arithmetic sum and difference of Qi and Q2,

respectively. Thus, the most natural distribution of charge within a

quantum well nearly emulates the traditional "Min" and "Max" MV operators.

It would seem that some additional effort is required if we are to create

quantum well interactions that emulate the familiar M-valued calculus.

Fortunately, the "&," "#," and "@" operators defined by Equation (15)

precisely predict the value of the charge held by both the ground state and

excited state energy levels of well type B for all combinations of Q1 and Q2.

Therefore, the addition of two quantized, M-valued packets of charge to a

simple quantum well can naturally express the &, "#," and @" operations on

13,21-space variables.
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Tabl 7.Result of Adding Charge Units Q1 and Q2 to Four Types of Quantum

Tabe 7 Wells. [Entries QLL and QL2 are the final Vdlues of charge located

in quantum levels Li and L2, respectively.]

INPUTS WELL A WELL B WELL C WELL 0

Q1 Q2 QLI QL2 QLI QL2  QLi QL2  QLi QL2

0 0 0 0 0 0 0 0 0 0 a,

0 1 1 0 1 0 1 0 1 0

o 2 1 1 2 0 2 0 2 0

1 0 1 0 1 0 1 0 1 0

1 1 1 1 2 0 2 0 2 0

1 2 1 2 2 1 3 0 3 0

2 0 1 1 2 0 2 0 2 0

2 1 1 2 2 1 3 0 3 0

2 2 1 3 2 2 3 1 4 0

Q1 Q2

-~~~*% -- - - -L

QLLi

- - - - - - - -L
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The quantum phenomenon of resonant tunneling can also be utilized to
implement the modified "Match" operator, %. To demonstrate this, we place

two electrically floating resonant tunneling wells (W1 and W2) in close
proximity to two input wells (W3 and W4) as shown inFigures 19 and 20. The

electrostatic potentials of the input wells are used to define the potential
energy of the floating tunnel wells. These floating wells will be in tunnel

resonance if, and only if, the charges carried by the input wells are
identical. As shown in Figure 20, any dissimilarity between input well

charges will frustrate the resonance condition between the tunneling wells.
To complete the function layout, the tunnel wells are linked to a large

source of charge, W5, which can flow across the wells when in resonance.
This charge feeds into a final quantum well that has been lithographed to

hold a maximum o- Em units of charge. This final well represents the output
of the "%" operation carried out by the structure described. After a

"calculation", the "%" well, W6, would remain empty if Q, = 11 was not equal
to Q2 = 12, and absorb EM = 2 units of charge when Ii = 12.

4. Additional Note

It can be argued that some form of nonlinear operation is a necessary

condition for computational completeness. At the least, the readout of the
state of a computing device requires some form of thresholding operation to

discriminate between the possible valid output symbols. It is probably also

true that nonlinear operations are required within a complex or chained

computation to filter noise. However, it is not necessary for the

computational events themselves to be logically or thermodynamically

irreversible. For this reason, purely quantum mechanical computations are
possible in principle. In the quantum coupled systems described above, the
"nonlinear" operations arise naturally from the energy quantization of

quantum well states. If a system were purely linear, then the principle of

superposition or simple proportion should apply to the various symbolic
representations of the internal machine state. However, the Pauli Exclusion

Principle guarantees that, at some point, the description of the state of two

quantized levels of charge (information) must diverge. For this reason,
linearity does not apply fully to a quantum system which in fact utilizes
more than one energy state in performing calculations.
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5. Summary

We have shown in principle that multivalued logic operations may be

embodied by quantum-coupled devices in a straightforward manner. Traditional
IMin"-"Max" multivalued algebra is not immediately compatible with the

simplest interactions between quantum coupled device structures. For this

reason, it is not certain whether the large amount of prior work on, e.g.,

the minimization of multivalued logic systems, can be applied to the

efficient design of more complex quantum MV logic circuits.
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VII. SELF-TIMED CELLULAR AUTOMATA

To maintain scalability, the use of on-chip wiring must be avoided in

nanometer-sized computing functions. This requirement introduces a major

dilemma in function design: it will no longer be possible to broadcast

synchronizing clocks to individual logic elements. This section discusses an

approach for organizing cellular automata computations in terms of locally

clocked cell interactions.

1. Introduction

The physical scaledown of electronic circuits exacerbates many design

problems associated with low-level connectivity and timing. Of particular

concern is the problem of clock skew within and between functions. As

circuit complexity increases, some form of mutual signaling must be used to

synchronize independent functions. These clock signals provide an orderly

method for data exchange between asynchronous functions and also supply the

"arrow of time" needed to direct the flow of data within functions. It is

essential to devise generic methods for distributing skew-free clocks, or to

provide self-timing techniques that are compatible with nanometer-sized

circuitry.

We have suggested that the cellular automaton (CA) architecture permits V

function scalablility into the nanometer regime. A CA structure avoids

interconnect saturation at low levels of functionality and encourages modular

approaches to function decomposition. However, the low dimensionality of the

CA places obvious limits on the degree to which the activities of large

device and function arrays may be synchronized. We have suggested that N

optical wavefronts may be used to broadcast skew-free clock signals to S

electro-optically active quantum devices.20  If optical or similar global

clocking methods are found to be unsuitable, then it will be difficult to

exploit the density advantages of nanoelectronic CA unless some measure of

asynchronous computation is possible at the lowest levels of functionality.

In this section we discuss one method for managing the timing of

computation in cellular automata. The approach is most easily applied to

nearest-neighbor CA, although any level of connectivity can be supported at

the expense of cell complexity and computational throughput. We emphasize
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the use of the method for nearest-neighbor CA because this class of CA is 0.

known to be functionally complete.

2. Model for Asynchronous Cellular Arrays

In a cellular automaton the future logic state of a given cell is a

deterministic function of its present state and that of its immediate

neighbors. For our model we assumed that the operations carried out within

each cell were synchronous, and that all intercell communications were

asynchronous. In particular, the calculation of the next states of a cell

was assumed to be a synchronous internal cell operation, while asynchronous

cell operations were taken to include both the input of neighboring cell

values and the broadcast of new states to local cell neighbors. These

suppositions should be reasonable as long as cell complexity and physical

cell size are both small.

Our plan for coordinating intercell signaling is based on a three-state

cycle. Seitz has described two- and four-cycle asynchronous systems.21 We

developed a three-cycle method based on the requirements discussed below.

First, it is assumed that the scaling advantages of the CA architecture

will have the greatest impact on the lowest levels of functionality and

feature size. As minimum geometries decrease into the nanometer regime,

there will be a commensurate reduction in the available functional complexity

for communication and control. Thus, minimizing the complexity of the

synchronization process is essential. We equate this reduction of complexity

to a minimization of the number of states that must be allocated for the

synchronization of nanoevents.

Second, we can show that a two-cycle synchronization method is not

adequate for classical CA. In a conventional digital circuit, the "arrow-of-

time" is provided naturally by the flow of information processing from input

lines, through logic gates, to output lines. In a CA the distinction between

input lines and output lines is only one of semantics. The output of a cell

at time (t) becomes one of its own inputs at time (t+1). Therefore, it is

necessary to encode a cell state with enough information to distinguish an
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"input" from an "output" event. We found that three sub-cycles or phases

were sufficient to fulfill these requirements.

Cell activities (input, process, and output) were assigned to each phase

of a periodic, three-phase clock as shown in Figure 21. Figure 22 depicts a

high-level representation of the sophistication required to implement the

self-timed system. For clarity, we discuss the timing process from the

perspective of a single cell, called cell X. As shown in Figure 22, each

cell exports to other cells only a partial representation of its logic state.

Neighboring cells receive the timing status of cell X, as well as the

fraction of the cell state shown schematically as register Z. Part of the

state of a cell (register Y) is not directly accessible by other cells.

Within the context of a classical CA, the inaccessibility of cell information

is taken into account in the definition of the cell interaction rules. Cell

operations within each clock phase break out as follows.

" Phase 0: Referring to Figures 21 and 22: each cell attempts to

update an internal representation of its next state during phase 0.

A next-state calculation is assumed to be valid only if all

neighbors are in either phase 0 or phase 1. Therefore, cell

operations within phase 0 are inhibited hy any neighborhood cells

which reside in a phase 2 condition. When all cell neighbors exit

the phase 2 condition, the new state of cell X is calculated and

stored in state register Y. The clock phase of cell X is then
.ncremented to phase 1.

" Phase 1: Cell X has performed the internal processing of its

inputs in phase 0. No processing operations are carried out by

cell X while in the phase I sub-cycle. Neighboring cells are

alerted to the completion of phase 0 processing activities when the

phase 1 sub-cycle is detected. A cell in phase I may not update

its external state, since all neighbors may not have completed

their processing of the existing state patterns. The transition of

a cell out of phase I into phase 2 occurs only when no neighboring

cell resides in a phase 0 sub-cycle.
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* Phase 2: Cell X enters phase 2 when it detects that all its 5,
neighbors are in phase 1 or 2 sub-cycles. This condition implies

that all local cells have performed internal process steps and no

longer require the old cell state pattern. Cell X is now free to

update its external state by transferring the contents of register

Y to register Z. (See Figure 22.) When all neighbors have entered

phase 2, all previous cell states within the neighborhood of cell X

will have been updated. Cell X now automatically transits back to

phase 0.

The multiphase cycle described above is allowed to repeat indefinitely.

The cell interaction rule required to implement the three-phase clock

operations is given in Table 8.

2.1 Experiment

An example of the three-phase timing process for a 20-cell automaton is

shown in Figure 23. Time steps are shown as new row entries in the vertical

sequence. A random number generator was used to select which cell should

perform a next-state calculation at each time step. No assumptions were made

about the order in which a cell made state and clock phase changes. In

plotting the timing pattern, we suppressed those time intervals that did not

result in a change of clock phase within any cell. As shown, each cell waits

until all its neighbors reach phase I before updating its own timing phase

and signaling phase 2. Similarly, no cell transits from phase 2 to phase 0

unless both of its neighbors are in phase 2. It can be seen that intercell

timing rapidly loses global synchronization, but local synchronization is

maintained over time.

2.2 Discussion

The operation of the timing system described is similar to a two-pass

application of a Muller C function on the cell neighborhood. 2 1 A Muller C

operation is equivalent to a bistable switch that has a built-in hysteresis.

The switch changes output state only after all binary inputs havE passed from

all 'O's to all 'I's and vice versa. Two Muller C elements that rDan

separately the (0,O,0}-[1I,1,j- and (1,l,1-{2,2,2}-neighborhood h~se

conditions could be used to construct an equivalent self-timed CA. In

essence, we have implemented a ternary, or three-level, Muller C function to
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Table 8. Internal Cell Clock Phase vs Phase of Local Cell Neighborhood

L X R X'

0 0 0 1
0 0 1 1Ia
00 2 0 Neighborhood of Cell X
0 1 0 1
0 1 1 1
0 1 2 1
0 2 0 0
0 2 1 2
0 2 2 0
1 0 0 1
1 0 1 1
1 0 2 0
1 1 0 112
1 1 2 2
1 2 0 2
1 2 1 2
1 2 2 2
2 0 0 0
2 0 1 0
2 0 2 0
2 1 0 1 LEGEND:
2 1 1 2
2 1 2 2 L Left neighbor phase at time t
2 2 0 0 X Internal cell phase at time t
2 2 1 2 R Right neighbor phase at time t v
2 2 2 0 X' Internal cell phase at time tV #

-a.
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p
manage intercell timing. In principle, the added cell functionality required

to implement the multiphase clock can be included as an extension of any

nearest-neighbor CA rule. Therefore, completely self-timed computation can

be incorporated into any existing synchronous, nearest-neighbor coupled CA at

the expense of additional cell complexity. Alternatively, a second CA array

could be constructed to perform the timing operations and mated on a cell-by-

cell basis to an existing CA network.

Initially, all cells must start in a well-defined state, since each cell

carries additional internal memory. No initial phase shifts may exist

between cell operations unless these internal states have been taken into

account.

For simplicity, functional synchronization in the described method was

confined to the neighborhood level. The effective synchronization of

neighborhood intra-actions guarantees proper operation of even fully

asynchronous cells. In practice, however, it might be that several cell

states must be synchronized as a group. An obvious instance would be an I/O
event between cell groups that must exchange large blocks of cell state

values. In these cases, a more hierarchical scheme would have to be used to

synchronize the interaction of cells that lie beyond the local neighborhood.

This hierarchy can be implemented by adding more states to the timing graph

so that the effective synchronization of cells can be expanded to synchronize

entire cell neighborhoods. The solution would entail the mapping of more

distant cell states into a nearest-neighbor CA, and then using the technique

described here to perfrom the synchronization process.
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APPENDIX A

REDUCED EQUATIONS FOR NEAREST-NEIGHBOR CELLULAR AUTOMATA

This appendix holds a list of all 256 interaction rules for nearest-

neighbor coupled, one-dimensional cellular automata. The equations are in

canonical (sum-of-products) form, and are expressed using the Boolean logic

operations AND, OR, and NOT. For a given set of cell values, A, B, and C at

time t, the equations predict the new state of the center cell B at time t+l.

For example, Rule 160 requires that the next state of the center cell be the

logical OR of the present state of its left and right neighbors. Rule 204

does not alter any cell states, while rule 240 simply shifts the cell pattern

by one cell at each time step. These equations were examined for conjugation

and reflection symmetry. We found that 88 rules are sufficient to completely

account for all automaton behaviors. These rules have been marked within

Table Al by a leading asterisk and the 88 quadruplet sets of rules are listed

in Table A2.
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Table Al. Reduced Equations For All Nearest Neighbor, One-Dimensional
Cellular Automata Rules

Rule Equation

*0 (0)
*1 (A BC

4 (ABC)
5 (A-C)

*6 (A-BC)+(A-BC-)
*7 (A8B)+(AC-)
*8 (A-BC )
* (A-BC-)-(A-BC)
*10 (A-C)
*11 (A-B)+(A-C)
*12 A -

*3 (A-B)+(--
*13 (A-B)+(AC)

*15 ( A -
16 (ABC)
17 (B-C

*18 (A-BC)+(ABC~)
*9 (A-B)+(-C-)

20 (A-BC-)+(ABC-)
21 (A-C)+(BC-)

*22 (A-B-C)+(ABC-)+(ABC-)
*23 (A8 -)+(A-C-)+(BC-)
*24 (A-BC)+(ABC-)
*25 (8-C-)+(A-BC-)+(A-BC)
*26 (A-C)+(ABC)+(A-BC)+(ABC-)
*27 (A-B-)+(A-C)+(B-C-)
*28 (A-B)+(A-BC-)+(A-BC)+(ABC-)
*29 (A8B)+(AC)+(BC-)
*30 (A-B)+(A-C)+(A-BC)+(A-BC-)+(A-BC)+(ABC-)

31 (A- )+(A-B)+(A-B-)+(A-C)+(A-C-)+(BC-)
*32 (AB-C)
*33 (A-B-C)+(AB-C)
*34 (B-C)
*35 (A-B)+(B-C)
*36 (A-BC-)+(AB-C)
*37 (A-C-)+(A-B-C-)+(A-BC-)+(AB-C)
*38 (B-C)-4(ABC)+(AIBC-)

39 (A-B-)4(A-C-)+(B-C)
*40 (A-BC)4-(AB-C)

Definitions Left Cell Center Cell Right Cell .

V= NOT A

(AB) =A AND 8 A - - B k.C
(A)+(B) =A OR B

A-2



Table Al. (Continued)

Rule Equation

*41 (ABC-)+(A-BC)+(AB-C)
*42 (A-C)+(B-C) 5

*43 (A-B)+(A-C)+(B-C)
*44 (A-B)+(A-BC-)+(A-BC)+(AB-C)
*45 (A-B)+(AC)+(A-BC-)+(A-BC-+(ABC)+(AB-C)
*46 (A-B)+(A-C)±(B-C)
47 (A-)+(AB)+(AB-+(A-C)+(A-C-)+(8-C)
48 (AB-)
49 (AB-)+(BC-)

*50 (AB-)-.(BC)
*51 ( -

52 (AB-)+(A-BC-)
53 (AB-)+(A-C-)

*54 (A8 )+(8-C)+(A8BC)+(A-BC-)
55 (B-)+(AB)+(AB'-+(AC-)

*56 (AB-)+(A-BC)
*57 (AB-)+(B-C-)+(ABC-)±(A-BC)
*58 (AB-)+(A-C)
59 (B-)+(AB-)+(A-B-)-(A-C)
*60 (AB-)-+(A-B)
61 (AB-)+(/B)+(AC-)

*6? (AB-)+(A-B)+(A-C)
63 (A-)±(B-)
64 (ABC-)
65 (A-BC-)+(ABC-)
66 (A-BC)+(ABC-)
67 (A-B-)+(ABC-)±(A-BC)+(ABC-)
68 (BC-)
69 (A-C-+(BCU)
70 (BC-)+(A-BC)
71 (A-B-)+(AC)+(BC-) 11

*72 (A-BC)+(ABC-)
*73 (A-B-C)-.(ABC)+(ABC-)
*74 (A-C)+(A-BC)+(A-BC)+(ABC-)
75 (A-B-)A-C)) -B-+A-B-C C)+(JBC)+(ABC-)

*76 (A-B)+(BC-)
*77 (A-B)+(A-C-)+(BC-)
*78 (AB)+(A-C)+(BC-) 4

79 (A-)-s(A8B)+(A-B-)+(/VC)+(A-C-)+(8C-)
80 (AC-)

DeiitosLeft Cell Center Cell Right CelIl
A= NOT A

(AB) 
(AND(A)+(B) A OR 8 A )---- -BC

A-3
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Table Al. (Continued)

Rule Equation

81 (AC-)+(BC-)
82 (AC-)+(A-BC)
83 (AC-)+(AB)
84 (AC-)+(BC-)
85 (C-)
86 (AC-)+(BC-)+(A-B-C)
87 (C-)+(AC)+(AB-)
88 (AC-)+(A-BC)
89 (AC-)-+(B-C-)+(AB-C)+(A-BC)

*90 (AC-)+(A-C)
91 (AC-)+(A-B-)+(A-C)
92 (AC-)+(A8B)
93 (C-)+(AC-)+(A-B)

*94 (AC-)+(A-B)+(A-C)
95 (A-)+(C-
96 (AB-C)i-(ABC-)
97 (A-BC-)+(ABC)+(AbC)
98 (B-C)+(A-B-C)+(AB-C)+(ABC-)
99 (A-B)+(B-C)+(A8BC-)+(A-BC)+(AB-C)+(ABC-)

100 (BC-)-'(ABC)+(AB-C)
101 (A-C)+(BC-)+(A~BC-)+(A-BC~)+(AB-C)
102 (BC-)+(B-C)
103 (A-B)+(A-C)+(8C-)±(BC)

*104 (A-BC)+(AB-C)+(ABC-)
*105 (A8BC-)+(A-BC)+(AB-C)+(ABC-j
*106 (A-C)+(B-C)+(A-BC)±(A-BC)+(AB-C)+(ABC-)
107 (A-B )+(AC)+(BC)+(ABC-)+(A-BC)+(A-BC)+(AB-C)+(ABC-)

*108 (A-B)+(BC )+(A-BC-)±(A-BC)+(AB-C)
109 (A-B)+(A-C-)+(BC)+(ABC-)+(ABC-)+(A-BC)±(AB-C)

*110 (A-B)+(A-C)+(BC-)+(B-C)
ill (A-)+(A-B)+(A-B~)+(A-C)+(A-C-)+(BC-)+(B-C)

A112 (AB-)+(AC-)
113 (A8 )+(AC-)+(BC-)
114 (AB-)+(AC-)+(B-C)
115 (B-)+(AB-)-i(AC-)
116 (AB~)+(AC-)+(BC-)
117 (C-)+(AB-)
118 (AB )+(AC-)+(BC-)+(B-C)
119 (B-)+(C-)
120 (A8-)+(AC-)+(A-BC)

*Definitions Left Cell Center Cell RighL Cell
A= NOT A

* (AB) = A AND B____

(A)+(B) = A OR B A B - el

A -4



Table Al. (Continued)

Rule Equation

121 (AB-)+(AC-)+(B-C-)+(ABC-)+(A-BC)
*122 (AB-)+(AC-)+(A-C)

123 (B- )+(AB- )+(AC- )+(A -E3 )+(A-C)
124 (AB-)+(AC-)+(A-B)
125 (C-)+(AB-)+(AC-)4(AB)

*126 (AB-)+(AC )+(A-B)+(A-C)
127 (A-)+(B-)+(C-)

*128 (ABC)
129 (A-BC )+ABC)

*130 (A-B-C)+(ABC)
131 (A-B)+(A-B-C )-4-ABtjC)+(ABC)
132 (A-BC-)+(ABC)
133 (A-C-)+(A-B-C )+(/AB )-I--(ABC)

*134 (A-BC)+(A-BC)+(ABC)
135 (A-B-)±(A-C-)+(A-B-C-)+(A-BC)+(A-BC-)+(ABC)

*136 (BC)
137 (BC)+(ABC-)

*138 (A C)+(BC)
139 (A--(A-C) (BC)

*140 (A-B)+(BC)
141 (A-B)+(ACj+(BC)

*142 (A-B)+(A-C)+(BC)
143 (A-)(AB)±(A-B )+(A-C)+(AC-+(BC)
144 (AB-C-)+(ABC)
145 (B-C-)+(A-B-C )4-ABC L)+(ABC)

*146 (A-B-C)+(AB-C-)-s(ABC)
147 (A-B- )+(B-C-)+(ABC- )+(A-BC)+(ABC) (ABC)
148 (A-BC-)+(AB-C-)(ABC)
149 (A-C-)+(B-C-)+ABC )+(ABCJ )+(AB-C-)+(ABC)

*150 (A-BC)+(AMBC-)+(AB-C-)+(ABC) -- )(-C)(BC)(
151 (A-B-)±(A-C- )+(B-C-()+(A+(AC)ABC+(A(C )(Bc)

*152 (BC) (A-BC)i-(AB-C-)
153 (BC)+(BC-

*154 (A-C)+(BC)+(A-B-C)+(A-BC)+(ABC-)
155 (A8 -)+(A-C)+(BC)+(rC-

*156 (M-B)A-(BC)+(A-BC )+(ABC)+(ABC-)
157 (A-B)+(A-C)+(BC)+(BC-)
158 (A-B)+(A-C)±(BC)+(ABC)+(ABCj)+(A-BC)+(A-C-)
159 (A-)±(A-B)4-(A-B )+(A-C)+(A-C-)(BC)+(B-C-)

*160 (AC)

Definitions Left Cell Center Cell Right CellI
A= NOT A

(AB) =A AND B A B
(A)+(B) = A OR B

A-5



Table Al. (Continued)

Rule Equation

161 (AC)+(ABC-)
*162 (AC)+(B-C)
163 (AC)+(AB)

*164 (AC)+(ABC-)
165 (AC)+(AC)
166 (AC)+(BC)+(A-BC)+(A-BC-)
167 (AC)+(A6)+(AC-)

*168 (AC)+(BC)
169 (AC)+(BC)+(ABC-)

*170 (c)
171 (C)+(AC)+(AB-)

*172 (AC)+(A-B) 1
173 (AC)+(A-B)+(A-C-)
174 (C)+(AC)+(A-B)
175 (A-)+(C)
176 (AB-)+(AC)
177 (AB-)+(AC)+(BC-)

*178 (AB-)+(AC)+(B-C)
179 (B-)+(AB-)+(AC)
180 (AB-)+(AC)+(A-BC-)
181 (AB-)+(AC)+(AC-)
182 (A6 )+(AC)+(BC)+(ABC)+(A-BC-)
183 (8 )+(AB )+(AC)+(A-B-)+(AC-)

*184 (AB-)+(AC)+(BC)
185 (AB- )4(AC)+(BC)+(B-C-)
186 (C)+(AB-)
187 (8-)+4(C)
188 (AB-)+(AC)4-(A-B)
189 (AB-)+(AC)(AB)+(AC-)
190 (C)+(AB-)+(AC)+(A-B)
191 (A - +(Bj- +(C)
192 (AB)
193 (AB)+(ABC-)
194 (AB)+(ABC)
195 (AB)+(A8B)
196 (AB)4(BC-)
197 (AB)+(AC-)
198 (AB)+(8C-)-(ABC)
199 (AB)+(AB)+(AC-)

*200 (AB)+(BC)

Definitions
A= NOT A Left Cell Center Cell Right Cell

(AB) = A AND B
(A)+(B) = A OR BABC

S

A-6
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Table Al. (Continued)
Rule Equation

201 (AB)+(BC)+(AB-C-)

203 (AB)-+(AB-)4(AC)
*204 (B)

205 (B)+(AB)+(AB)+(AC-)
206 (B)+(AB)+(A-B)+(A-C)
207 (A-)±(B)
208 (AB)+(AC-)
209 (AB)+(AC)+(BC-
210 (AB)+(AC)+(ABC)
211 (AB)+(AC)+(AB-)
212 (AB)+(AC-)4(BC-)
213 (C-)+(AB)
214 (AB)+(AC- )+(BC-)+(A-B-C)
215 (C-)+(AB)+(AC-)+(AB-)
216 (AB)+(AC-)+(BC)
217 (AB)+(AC-)+(BC)+(BC-)
218 (AB)+(AC-)+(A-C)%
219 (AB)+(AC-)+(A-B-)-(A-C)
220 (B)+(AB)+(AC-)
221 (B)+(C-)S
222 (B)+(AB)+(AC-)+(A8B)+(A-C)
223 (A-)+(B)+(C-)
224 (AB)+(AC)
225 (AB)+(AC)+(A-C-)
226 (AB)+(AC)+(B-C)
227 (AB)-'(AC)(AB
228 (AB)+(AC)-+(BC-)
229 (AB)+(AC)+(AC-)
230 (AB)+(AC)+(BC )+(B-C)
231 (AB)+(AC)+(A-B-)+(AC)

*23? (AB)+(AC)+(BC)
233 (AB)+(AC)4(BC)+(ABC-)
234 (C)+(AB)
235 (C)+(AB)+(AC)+(AB)
236 (F)+(AB)+(AC)
237 (B)+(AB)+(AC)+(AB)+(AC-)
238 (8)+C)
239 (A-)+(B)+(C)
240 (A)

DeintinsLeft Cell Center Cell Right Cell1
A- NOT A

(AB) =A AND BABC
(A)+(B) =A OR B
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Table Al. (Continued)

Rule Equation

241 (A)+(AB)+(AB-)+(AC)+(AC-)-+(BC-)
242 (A)+(AB)+(AB-)+(AC)+(AC-)+(B-C)
243 (A)+(B-)
244 (A)+(AB)+(AB-)+(AC)+(AC-)+(BC-)
245 (A)+(C-)
246 (A)+(AB)+(AB-)+(AC)+(AC)+(BC-)+(B-C)
247 (A)+(B-)+(C-)
248 (A)+(AB)+(AB-)+(AC)-(AC-)+(BC)
249 (A)+(AB)+(A-)+(AC)+(AC)+(BC)+(BC-)
250 (A)+(C)
251 (A)+(B-)+(C)
252 (A)+(B)
253 ( ) ( ) ( -
254 (A)+(B)+(C)
255 (1)

Definitions Left Cell Center Cell Right Cell
A-=NOT A

(AB) =A AND BA C
(A)+(B) =A OR B
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Table A2. Quadruplets of conjugation- and reflection-symmetric rules for
nearest-neighbor, coupled one dimensional automata.

Quad R S
Number Rule Set

1 0 0 255 255

2 1 1 127 127

3 2 16 191 247

4 3 17 63 119

5 4 4 223 223

6 5 5 95 95

7 6 20 159 215

8 7 21 31 87

9 8 64 239 253

10 9 65 Ill 125

11 10 80 175 245

12 11 81 47 117

13 12 68 207 221

14 13 69 79 93

15 14 84 143 213

16 15 85 15 85

17 18 18 183 183

18 19 19 55 55

19 22 22 151 151

20 23 23 23 23

21 24 66 231 189

22 25 67 103 61

23 26 82 167 181

24 27 83 39 53

25 28 70 199 157

26 29 71 71 29

27 30 86 135 149

28 32 32 251 251

29 33 33 123 123

30 34 48 187 243
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Table A2. (continued)

Quad Rule Set N
Number R

31 35 49 59 115

32 36 36 219 219

33 37 37 91 91

34 38 52 155 211

35 40 96 235 249

36 41 97 107 121

37 42 112 171 241

38 43 113 43 113

39 44 100 203 217

40 45 101 75 89

41 46 116 139 209 0

42 50 50 179 179

43 51 51 51 51 /

44 54 54 147 147

45 56 98 227 185

46 57 99 99 57

47 58 114 163 177

48 62 118 131 145

50 72 72 237 237

51 73 73 109 109

52 74 88 173 229

53 76 76 205 205 -

54 77 77 77 77 , -%

55 78 92 141 197 5-

56 90 90 165 165

57 94 94 133 133 N

58 104 104 233 233

59 105 105 105 105

60 106 120 169 225

A-O 1
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Table A2. (continued)

Quad Rule Set
Number

61 108 108 201 201

62 110 124 137 193

63 122 122 161 161

64 126 126 129 129

65 128 128 254 254

66 130 144 190 246

67 132 132 222 222

68 134 148 158 214

69 136 192 238 252

70 138 208 174 244

71 140 196 206 220

72 142 212 142 212

73 146 146 182 182

74 150 150 150 150

75 152 194 230 188

76 154 210 166 180

77 156 198 198 156

78 160 160 250 250

79 162 176 186 242

80 164 164 218 218

81 168 224 234 248

82 170 240 170 240

83 172 228 202 216

84 178 178 178 178

85 184 226 226 184

86 200 200 236 236

87 204 204 204 204

88 232 232 232 232
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APPENDIX B

SPACE-TIME PLOTS OF NEAREST-NEIGHBOR CELLULAR AUTOMATA

In this appendix, we include graphical representations of the time

evolution of a twenty eight (28) cell, homogeneous, one-dimensional

automaton. The cell states at each time step are shown horizontally while

the changes in cell state are plotted in a vertical line. The randomly

selected starting sta'e for each simulation is shown as the isolated pattern

of cell values at the top of each plot. Cells in state "I" and "0" are shown

in dark and light shading respectively.

The ends of the linear array of cells were coupled together so that the

cells formed a closed loop. This explains why rules such as 6,31,and 151

appear to wrap around the edges of the plots. The edge cells are actually

nearest neighbors in these simulations. Of the 256 rules shown, only 88

rule operations are independent. For example, rules 14,84,143, and 213 lead

to identical dynamics after reflection and/or conjugation of the observed

patterns. Refer to Appendix A for a list of the unique rules and their

mathematical representation.
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Figure B3. Space-time plots of nearest-neighbor cellular automata.
Rule is defined in Appendix A.
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Figure 88. Space-time plots of nearest-neighbor cetluiar automata.
Rule is defined in Appendix A.
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APPENDIX C

ATTRACTOR SPECTRA FOR ONE-DIMENSIONAL CELLULAR AUTOMATA

This section catalogs the distribution of state attractors for nearest-

neighbor coupled cellular automata. Limit cycle lengths are plotted versus

the size of the simulated array. The ends of the linear array of cells were

coupled together so that the cells formed a closed loop. That is, the edge

cells are actually nearest neighbors in the simulations. Of the 256 possible

nearest-neighbor rules, only 88 rule operations are independent. Since for

example, rules 14,84,143, and 213 lead to identical attractor spectra, only

Rule 14 is included in the plots. Refer to the Appendix A for a list of the

unique rules and their mathematical representation.

The limiting dynamics falls into four simple classes of behavior,

distinguishable by the various attractor types observed.

Class J Rules (Type Al attractors) : 4, 5, 8, 12, 13, 19, 23, 28, 29,

32, 33, 36, 44, 50, 51, 72, 76, 77, 78, 104, 128

Class K Rules (Types Al and A2 attractors) : 3, 6, 7, 9, 10, 11, 14,
15, 24, 27, 40, 42, 43, 46, 56, 57, 58, 62, 74, 130,
134, 138, 142, 152, 162, 184

Class L Rules (Types Al and A3 attractors) : 8, 30, 37, 45, 54, 60,
73, 90, 94, 105, 110, 122, 126, 146, 150, 164, 168, 170,
172

Class M Rules (Types Al, A2, and A3 attractors) : 25, 26, 35, 38, 41,
106

where we have defined the attractor types as follows.

Type Al Attractor : Cycle length is independent of array size.

Type A2 Attractor : Cycle length is in integral proportion to array
size.

Type A3 Attractor : Cycle length is uncorrelated with array size.
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Figure C1. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in ,
Appendix A.
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Figure C2. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C4. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C5. Limit cyclIe length v s array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in.
Appendi x A. "'C-6
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Figure C6. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C7. Limit cycle length vs array size for a one-dimensional,I
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C8. Limit cycle length vs array size for a one-dimensional, }

nearest-neighbor coupled cellular automata. Rule is defined in i

Appendix A.
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Figure C9. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C12. Limit cycle length vs array size for a one-dimensional, I-

nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C13. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C15. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is define i-
Appendix A.
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Figure C16. Limit cycle length vs array size for a one-dimensional, S

nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure CU/. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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RULE 25
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Figure C19. Limit cycle length vs array size Ior a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.

1C000c- 0 1 20253
Array Siz



I.

RULE 26

10I I I I I

102 00

4.3#

0r 4

0 0

00 0 152053

0 0S0ize 0 0

102 <0

Figure C20. Limit cycle length vs array size for a one-dimensional,

I'4%

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A. ..
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Figure C21. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in ,
Appendix A. '
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Figure C22. L im it cycle length vs array size for a one-dimensional, -
nearest-neighbor coupled cellular automata. Rule is defined in :

Appendix A._, "
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Figure C23. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C24. Limit cycle length vs array size for a one-dimensional, I
nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C25. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C26. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in m
Appendix A.
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Figure C27. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C28. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure fi29. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C30. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined inm
Appendix A.
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Figure C31. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Append ix A.
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FiueC32. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C33. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C34. Limit cycle length vs array size for a one-dimensional,•

nearest-neighbor coupled cellular automata. Rule is defined in.

Appendix A. ,
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Figure C36. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in".'

Append ix A. 
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Figure C37. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C40. Limit cycle length vs array size for a one-dimensional,•
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A. ii
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Figure C41. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C42. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C44. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A. ,
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Figure C46. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C47. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C48. Limit cycle length vs array me nno-dimnsional,

nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C49. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in ,
Appendix A.

C-50-



RULE 76

10

1'4

t%*,

00

- - 10 15 -0 -5 30-: -

Array Size

Figure C50. Limit cycle length vs array size for a one-dimensional,
pnnearest-neighborixA coupled cellular automata. Rule is defined in !
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Figure C51. L~imit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C52. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in -

Appendix A.
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Figure C53. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C54. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in '

Append ix A. :.
C-5

o 0•



RULE 104

10

--- 0 - O-- 5 - 0 -a -o - :53
Array Size

Figure C55. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A. '
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Figure C57. Limit cycle length vs array size for a one-dimensional, -
Snearest-neighbor coupled cellular automata. Rule is defined in

Append4ix A.

10~ *-0



VR).-~~~A WX ATYLTMOT

RULE 108

10

C-59

%I

fr.'_

"N;

1
0 5 10 15 20 25 30

Array Size

Figure C58. Limit cycle length vs array size for a one-dimensional,

nearest neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C59. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in -

Appendix A. ,,
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Figure C60. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C62. Limit cycle length vs array size for a one-dimensional, ]

nearest-neighbor coupled cellular automata. Rule is defined in"#
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Figure C64. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in ,
Appendix A.
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Figure C65. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C67. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in-.

Appendix A. .
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Appendix A.
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Figure C70. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C71. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in

~Appendix A.
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Figure C72. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A. .
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Figure C73. Limit cycle length vs array size for a one-dimensional, i

nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.

C -74

w '5 V .. . - ,S-%4, ," , '5 " "-'",". ".-- .. -"-""'-- .. V" "...v'-.. -. '- -.'.-" ~-."-- I."



* -~7-777% 7. Y. w- ; KvT

RULE 156

10

S

0 5 11522530
Array Size

Figure C74. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C75. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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Figure C76. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C77. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Append ix A.,.
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Figure C78. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C79. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.

C -80



RULE 172

100

10- 0

'.

- - , - O- , f - ,,,5 3

""4

I-I A ppendix A

43 , 4 , ,4,

.5

0 5 10 15 20 25 30
Array Size .

Figure C80. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Append ix A. w
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Figure C81. Limit cycle length vs array size for a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C82. Limit cycle length vs array size for a one-dimensional,
-car-0t neighbor coupled cellular automata. Rule is defined in
Appendix A.
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Figure C83. Limit cycle length vs array size tor a one-dimensional,
nearest-neighbor coupled cellular automata. Rule is defined in
Appendix A.

C-84

-i* MN



RULE 204

101'

tw-

a)x

C-85
.

°p~p

0 5 10 15 20 25 30
Array Size

Figure C84. Limit cycle length vs array size for a one-dimensional,

nearest-neighbor coupled cellular automata. Rule is defined in

Appendix A.
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APPENDIX D

ATTRACTOR BASIN VOLUMES FOR ONE-DIMENSIONAL CELLULAR AUTOMATA

This section catalogs the basin size of state attractors for nearest-

neighbor coupled cellular automata. The probability (Z) that a random cell

pattern will evolve to a given limit cycle is plotted versus limit cycle size

(Y) and array size (X). This probability is equal to the fractional volume

of state space absorbed by the attractor's basin. In simulating the model

dynamics, the ends of the linear array of cells were coupled together so that

the cells formed a closed loop. That is, the edge cells are actually nearest

neighbors in the simulations. Of the 256 possible nearest-neighbor cell

rules, only 88 rule operations are independent. Since for example, rules

14,84,143, and 213 lead to identical attractor spectra, only W<ule 14 is

included in the plots. In addition, several independent rules lead to very

uninteresting attractor probability spectra. In particular, we did not

include any rule which was characterized by a single attractor. Rule 204 is

an example of an independent rule which merely replicated the starting cell

pattern over time. The attractor spectra of such rules are trivial to

predict. Refer to the Appendices A and B for a complete list of independent

rules and their attractor sets.

The limiting dynamics falls into four simple classes of behavior,

distinguishable by the various attractor types observed.

Class J Rules (Type Al attractors) : 4, 5, 8, 12, 13, 19, 23, 28, 29,

32, 33, 36, 44, 50, 51, 72, 76, 77, 78, 104, 128

Class K Rules (Types Al and A2 attractors) : 3, 6, 7, 9, 10, Ii, 14,
15, 24, 27, 40, 42, 43, 46, 56, 57, 58, 62, 74, 130,
134, 138, 142, 152, 162, 184

Class L Rules (Types Al and A3 attractors) : 8, 30, 37, 45, 54, 60,
73, 90, 94, 105, 110, 122, 126, 146, 150, 164, 168, 170,
172

Class M Rules (Types Al, A2, and A3 attractors) 25, 26, 35, 38, 41,
106

where we have defined the attractor types as follows:

D-1



Type Al Attractor : Cycle length is independent of array size.

Type A2 Attractor : Cycle length is ;n integral proportion to array
size.

Type A3 Attractor : Cycle length is uncorrelated with array size.

Within the Class L and M rules is a subset of rules that contain

attractors which approach full ergodicity. That is, a few limit cycle lengths

are within an order of magnitude of the total volume of state space for the

model. These rules are 30, 45, 54, 106, and 110. Rule 30 and 45 display

attractors which are nearly perfect pseudo-random sequence generators. As

shown in the respective plots, these attractors lie along the diagonal of

each plot. The high attractor probabilities for these rules are indicative of

the fact that this class of attractor absorbs practically all of the

available state space for automata of these sizes and rule types.
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Figure 01. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 0?. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 03. Attractor probabilities vs array size. Rule is defined in

Appendix A.
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Figure D4. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 06. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 07. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 08. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D9. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D10. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 011. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 013. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D14. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 018. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 019. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 021. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D22. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D24. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 026. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D27. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D28. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure D29. Attractor probabilities vs array size. Rule is defined in
Appendix A.

0-31



Rule 43

08

08 I

0.4

02 28

03 0 13

1 2 3 -- ---

1 45 8

Legend
X Number of Cells in Array
Y Log (Limit Cycle Length)
Z Fraction of State Space occupied

by Attractor Basin.

Figure D30. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 032. Attractor probabilities vs array size. Rule is defined in
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Figure D33. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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Figure 034. Attractor probabilities vs array size. Rule is defined in
Appendix A.
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